Assessment of Immunoreactivity against Therapeutic Options Employing the Leukocyte Adherence Inhibition Test as a Tool for Precision Medicine


Background: The Precision Medicine’s approach employs the endotype concept as a central feature to personalize medical treatment. Individual immunoreactivity, alongside characteristics such as genetics, environment, and diet, is one of the factors that differentiates the therapeutic-driven endotypes.

Objective: To evaluate the opportunity of the Leukocyte Adherence Inhibition test to differentiate the immunoreactivity between two similar therapeutic agents employed on Allergen Immunotherapy.

Methods: Side by side Leukocyte Adherence Inhibitions tests were performed with ovalbumin and carbamylated ovalbumin on a population of 33 self-reported egg-allergic individuals.

Results: The results showed two endotypes inside the immune response of the studied groups: The first endotype was defined by the 16 individuals that presented a significant decrease in ovalbumin’s immunoreactivity after carbamylation (mean of differences = 35%; p = 0.002). The second endotype was defined by 17 individuals that presented a significant increase in ovalbumin’s immunoreactivity after carbamylation (mean of differences = 32%; p = 0.001).

Conclusion: The Leukocyte Adherence Inhibition test was able to differentiate two distinct immunoreactivity patterns when comparing two similar therapeutic agents suggesting, as proof of concept, a potential role to be employed as a Precision Medicine tool.

  1. F. Vega, C. Panizo, M. T. Dordal, M. L. González, E. Velázquez, A. Valero, et al. “Relationship between respiratory and food allergy and evaluation of preventive measures,” Allergologia et Immunopathologia, vol. 44, no. 3, pp. 263-275, 2016.  |   Google Scholar
  2. A. K. Sood, and A. M. Scurlock, “Food allergy oral immunotherapy,” Journal of Food Allergy, vol. 2, no. 1, pp. 75-80, 2020.  |   Google Scholar
  3. O. M. Schloss, “A Case of Allergy to Common Foods,” Am J Dis Child, vol. III, no. 6, pp. 341-362, June 1, 1912, 1912.  |   Google Scholar
  4. G. W. Canonica, C. Bachert, P. Hellings, D. Ryan, E. Valovirta, M. Wickman, O. De Beaumont, and J. Bousquet, “Allergen Immunotherapy (AIT): a prototype of Precision Medicine,” World Allergy Organ J, vol. 8, no. 1, pp. 015-0079, 2015.  |   Google Scholar
  5. F. S. Collins, and H. Varmus, “A New Initiative on Precision Medicine,” New England Journal of Medicine, vol. 372, no. 9, pp. 793-795, 2015.  |   Google Scholar
  6. P. L. Sankar, and L. S. Parker, “The Precision Medicine Initiative's All of Us Research Program: an agenda for research on its ethical, legal, and social issues,” Genetics in Medicine, vol. 19, no. 7, pp. 743-750, 2017.  |   Google Scholar
  7. C. Song, Y. Kong, L. Huang, H. Luo, and X. Zhu, “Big data-driven precision medicine: Starting the custom-made era of iatrology,” Biomedicine & Pharmacotherapy, vol. 129, pp. 110445, 2020.  |   Google Scholar
  8. L. Chen, J. E. Manautou, T. P. Rasmussen, and X.-b. Zhong, “Development of precision medicine approaches based on inter-individual variability of BCRP/ABCG2,” Acta Pharmaceutica Sinica B, vol. 9, no. 4, pp. 659-674, 2019.  |   Google Scholar
  9. I. Agache, and C. A. Akdis, “Endotypes of allergic diseases and asthma: An important step in building blocks for the future of precision medicine,” Allergology International, vol. 65, no. 3, pp. 243-252, 2020.  |   Google Scholar
  10. A. Muraro, R. F. Lemanske, P. W. Hellings, C. A. Akdis, T. Bieber, T. B. Casale, et al. “Precision medicine in patients with allergic diseases: Airway diseases and atopic dermatitis; PRACTALL document of the European Academy of Allergy and Clinical Immunology and the American Academy of Allergy, Asthma & Immunology,” Journal of Allergy and Clinical Immunology, vol. 137, no. 5, pp. 1347-1358, 2016.  |   Google Scholar
  11. I. Miyagawa, and Y. Tanaka, “The approach to precision medicine for the treatment of psoriatic arthritis,” Immunological Medicine, vol. 43, no. 3, pp. 98-102, 2020.  |   Google Scholar
  12. B. Shen, and J. Hwang, “The clinical utility of precision medicine: properly assessing the value of emerging diagnostic tests,” Clin Pharmacol Ther, vol. 88, no. 6, pp. 754-6, Dec, 2010.  |   Google Scholar
  13. C. E. Olivier, “The use of allergoids and adjuvants in Allergen Immunotherapy,” Arch Asthma Allergy Immunol, vol. 1, pp. 40-60, 2017.  |   Google Scholar
  14. R. F. Sledge, “Treatment of hay fever with alum-precipitated pollen extract,” Journal of Allergy, vol. 9, no. 4, pp. 424, 2017/07/28, 1938.  |   Google Scholar
  15. P. Y. Castelain, M. Castelain, D. Vervloet, L. Garbe, and B. Mallet, “Sensitization to aluminium by aluminium-precipitated dust and pollen extracts,” Contact Dermatitis, vol. 19, no. 1, pp. 58-60, 1988.  |   Google Scholar
  16. C. Lombardi, S. Gargioni, A. Melchiorre, A. Tiri, P. Falagiani, G. W. Canonica, and G. Passalacqua, “Safety of sublingual immunotherapy with monomeric allergoid in adults: multicenter post-marketing surveillance study,” Allergy, vol. 56, no. 10, pp. 989-92, Oct, 2001.  |   Google Scholar
  17. M. T. Velasquez, A. Ramezani, and D. S. Raj, “Urea and protein carbamylation in ESRD: surrogate markers or partners in crime?,” Kidney Int, vol. 87, no. 6, pp. 1092-4, 2015.  |   Google Scholar
  18. S. p. Jaisson, C. Pietrement, P. Gillery, and G. S. Makowski, "Chapter One - Protein Carbamylation: Chemistry, Pathophysiological Involvement, and Biomarkers," Advances in Clinical Chemistry, pp. 1-38: Elsevier, 2018.  |   Google Scholar
  19. A. G. Basnakian, S. V. Shah, E. Ok, E. Altunel, E. O. Apostolov, and G. S. Makowski, "Carbamylated LDL," Advances in Clinical Chemistry, pp. 25-52: Elsevier, 2010.  |   Google Scholar
  20. J. L. Sanchez-Trincado, M. Gomez-Perosanz, and P. A. Reche, “Fundamentals and Methods for T- and B-Cell Epitope Prediction,” Journal of Immunology Research, vol. 2017, pp. 2680160, 2017.  |   Google Scholar
  21. R. Mösges, B. Ritter, G. Kayoko, D. Passali, and S. Allekotte, “Carbamylated monomeric allergoids as a therapeutic option for sublingual immunotherapy of dust mite- and grass pollen-induced allergic rhinoconjunctivitis: a systematic review of published trials with a meta-analysis of treatment using Lais® tablets.,” Acta Dermatovenerologica APA, vol. 19, no. 3, pp. 3-10, 2010.  |   Google Scholar
  22. T. ten Broeke, R. Wubbolts, and W. Stoorvogel, “MHC class II antigen presentation by dendritic cells regulated through endosomal sorting,” Cold Spring Harbor perspectives in biology, vol. 5, no. 12, pp. a016873-a016873, 2013.  |   Google Scholar
  23. A. D. Nisbet, R. H. Saundry, A. J. G. Moir, L. A. Fothergill, and J. E. Fothergill, “The Complete Amino-Acid Sequence of Hen Ovalbumin,” European Journal of Biochemistry, vol. 115, no. 2, pp. 335-345, 2021/02/04, 1981.  |   Google Scholar
  24. R. J. Rona, T. Keil, C. Summers, D. Gislason, L. Zuidmeer, E. Sodergren, et al. “The prevalence of food allergy: A meta-analysis,” Journal of Allergy and Clinical Immunology, vol. 120, no. 3, pp. 638-646, 2021/02/09, 2007.  |   Google Scholar
  25. P. G. H. Gell, and R. R. A. Coombs, "Classification of Allergic Reactions Responsible for Clinical Hypersensitivity and Disease.," Clinical Aspects of Immunology, P. G. H. Gell and R. R. A. Coombs, eds., pp. 575-596, Oxford: Blackwell Scientific Publications, 1968.  |   Google Scholar
  26. S. L. Taylor, S. M. Gendel, G. F. Houben, and E. Julien, “The Key Events Dose-Response Framework: a foundation for examining variability in elicitation thresholds for food allergens,” Crit Rev Food Sci Nutr, vol. 49, no. 8, pp. 729-39, Sep, 2009.  |   Google Scholar
  27. Olivier CE, Santos RAPG, Argentão DGP, S. MD, and L. RPS, “Food-dependent drug-induced angioedema: a case report,” J Allergy Immunol, 2017 DOI: 10.15761/JAI.1000101, 2017.  |   Google Scholar
  28. Y. Aihara, T. Kotoyori, Y. Takahashi, H. Osuna, S. Ohnuma, and Z. Ikezawa, “The necessity for dual food intake to provoke food-dependent exercise-induced anaphylaxis (FEIAn): a case report of FEIAn with simultaneous intake of wheat and umeboshi,” J Allergy Clin Immunol, vol. 107, no. 6, pp. 1100-5, Jun, 2001.  |   Google Scholar
  29. S. A. Hasan, R. D. Wells, and C. M. Davis, “Egg hypersensitivity in review,” Allergy Asthma Proc, vol. 34, no. 1, pp. 26-32, 2013.  |   Google Scholar
  30. M. Chruszcz, K. Mikolajczak, N. Mank, K. A. Majorek, P. J. Porebski, and W. Minor, “Serum albumins - unusual allergens; 2013,” Biochimica et biophysica acta, vol. 1830, no. 12, pp. 5375-5381.  |   Google Scholar
  31. F. J. Moreno, and A. Clemente, “2S Albumin Storage Proteins: What Makes them Food Allergens?,” The open biochemistry journal, vol. 2, pp. 16-28, 2008.  |   Google Scholar
  32. R. Thomé, L. G. R. Fernandes, M. F. Mineiro, P. U. Simioni, P. P. Joazeiro, and W. M. d. S. C. Tamashiro, “Oral tolerance and OVA-induced tolerogenic dendritic cells reduce the severity of collagen/ovalbumin-induced arthritis in mice,” Cellular Immunology, vol. 280, no. 1, pp. 113-123, 2012.  |   Google Scholar
  33. P. U. Simioni, L. G. R. Fernandes, D. L. Gabriel, and W. M. S. C. Tamashiro, “Induction of Systemic Tolerance in Normal but not in Transgenic Mice Through Continuous Feeding of Ovalbumin,” Scandinavian Journal of Immunology, vol. 60, no. 3, pp. 257-266, 2004.  |   Google Scholar
  34. L. N. Paiatto, F. G. D. Silva, J. Bier, M. R. Brochetto-Braga, Á. T. Yamada, W. M. S. C. Tamashiro, and P. U. Simioni, “Oral Tolerance Induced by OVA Intake Ameliorates TNBS-Induced Colitis in Mice,” PLoS ONE, vol. 12, no. 1, pp. e0170205, 2017.  |   Google Scholar
  35. C.-H. Tang, and L. Shen, “Role of Conformational Flexibility in the Emulsifying Properties of Bovine Serum Albumin,” Journal of Agricultural and Food Chemistry, vol. 61, no. 12, pp. 3097-3110, 2013.  |   Google Scholar
  36. Y. Mine, “Recent advances in the understanding of egg white protein functionality,” Trends in Food Science & Technology, vol. 6, no. 7, pp. 225-232, 1995.  |   Google Scholar
  37. S. Ngarize, H. Herman, A. Adams, and N. Howell, “Comparison of Changes in the Secondary Structure of Unheated, Heated, and High-Pressure-Treated β-Lactoglobulin and Ovalbumin Proteins Using Fourier Transform Raman Spectroscopy and Self-Deconvolution,” Journal of Agricultural and Food Chemistry, vol. 52, no. 21, pp. 6470-6477, 2004.  |   Google Scholar
  38. D. M. P. Thomson, Assessment of immune status by the leukocyte adherence inhibition test, New York: Academic Press, 1982.  |   Google Scholar
  39. W. J. Halliday, “Historical Background and Aspects of the Mechanism of Leukocyte Adherence Inhibition,” Cancer Res, vol. 39, no. 2, pp. 558-563, February 1, 1979, 1979.  |   Google Scholar
  40. T. Appelboom, J. P. Famaey, R. Gortz, and J. Wybran, “Effect of levamisole on leukocyte adherence inhibition,” Agents Actions, vol. 11, no. 6-7, pp. 604-5, Dec, 1981.  |   Google Scholar
  41. A. Fink, H. Bibi, A. Eliraz, E. Tabachnik, and Z. Bentwich, “Leukotrienes (LTC4, LTD4) confer glass non-adherence on leukocytes of asthmatic individuals. Dependency on cyclooxygenase products and calcium ion,” Immunol Lett, vol. 10, no. 6, pp. 319-23, 1985.  |   Google Scholar
  42. A. Fink, R. Shahin, A. Eliraz, H. Bibi, H. Berkenstadt, S. Levin, and Z. Bentwich, “Interferon modulates the leukotriene C4-induced non-adherence properties of leukocytes: acquisition of an asthmatic phenotype,” Immunol Lett, vol. 10, no. 3-4, pp. 159-63, 1985.  |   Google Scholar
  43. K. Iwabuchi, and T. Yamashita, “Platelet-derived neutrophil adherence-inhibiting factor in humans,” Blood, vol. 76, no. 11, pp. 2368-73, Dec 1, 1990.  |   Google Scholar
  44. C. E. Olivier, D. G. P. Argentão, R. A. P. G. Santos, M. D. Silva, R. P. S. Lima, and R. L. Zollner, “Skin scrape test: an inexpensive and painless skin test for recognition of immediate hypersensitivity in children and adults,” The Open Allergy Journal, vol. 6, pp. 9-17, 2013.  |   Google Scholar
  45. G. Mistrello, O. Brenna, D. Roncarolo, D. Zanoni, M. Gentili, and P. Falagiani, “Monomeric chemically modified allergens: Immunologic and physicochemical characterization,” Allergy, vol. 51, no. 1, pp. 8-15, 1996.  |   Google Scholar
  46. A. D. E. Lauchlan, “Borax as a Standard Buffer Solution,” Nature, vol. 154, no. 3914, pp. 577-577, 1944.  |   Google Scholar
  47. M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding,” Anal Biochem, vol. 72, pp. 248-54, 1976.  |   Google Scholar
  48. K. Weber, J. R. Pringle, and M. Osborn, “Measurement of molecular weights by electrophoresis on SDS-acrylamide gel,” Methods Enzymol, vol. 26 PtC, pp. 3-27, 1972.  |   Google Scholar
  49. C. E. Olivier, R. P. S. Lima, D. G. Pinto, R. A. P. G. Santos, G. K. M. Silva, S. L. S. Lorena, et a., “In search of a tolerance-induction strategy for cow's milk allergies: significant reduction of beta-lactoglobulin allergenicity via transglutaminase/cysteine polymerization.,” Clinics, vol. 67, no. 10, pp. 1171-1179, 2012.  |   Google Scholar
  50. W. S. Gosset (Student), “The probable error of a mean,” Biometrika, vol. 6, no. 1, pp. 1-25, 1908.  |   Google Scholar
  51. J. Leszczynska, A. Lacka, and M. Bryszewska, “The use of transglutaminase in the reduction of immunoreactivity of wheat flour,” Food and Agricultural Immunology, vol. 17, no. 2, pp. 105-113, 2006.  |   Google Scholar
  52. A. F. Alkhateeb, “Foods Causing Highest IgG Immune Response in Saudi Arabia,” Annual Research & Review in Biology, pp. 115-127, 2020.  |   Google Scholar
  53. A. M. Mowat, “Anatomical basis of tolerance and immunity to intestinal antigens,” Nature Reviews Immunology, vol. 3, no. 4, pp. 331-341, 2003.  |   Google Scholar
  54. M. C. Berin, and A. S. Hugh, “Mucosal Immunology of Food Allergy,” Current Biology, vol. 23, no. 9, pp. R389-R400, 2013.  |   Google Scholar
  55. J. Pier, E. G. Liu, S. Eisenbarth, and K. M. Järvinen, “The Role of Immunoglobulin A in Oral Tolerance and Food Allergy,” Ann Allergy Asthma Immunol, vol. 2021, no. 3, pp. 00090-9, 2021.  |   Google Scholar
  56. B. Bohle, T. Kinaciyan, M. Gerstmayr, A. Radakovics, B. Jahn-Schmid, and C. Ebner, “Sublingual immunotherapy induces IL-10-producing T regulatory cells, allergen-specific T-cell tolerance, and immune deviation,” J Allergy Clin Immunol, vol. 120, no. 3, pp. 707-13, Sep, 2007.  |   Google Scholar
  57. O. U. Soyer, M. Akdis, J. Ring, H. Behrendt, R. Crameri, R. Lauener, and C. A. Akdis, “Mechanisms of peripheral tolerance to allergens,” Allergy, vol. 68, no. 2, pp. 161-170, 2012.  |   Google Scholar
  58. R. Hinterleitner, and B. Jabri, “A dendritic cell subset designed for oral tolerance,” Nat Immunol, vol. 17, no. 5, pp. 474-6, 2016.  |   Google Scholar

How to Cite

Olivier, C. E., Pinto, D. G., Lima, R. P. dos S., Silva, M. D. da, Santos, R. A. P. G. dos, Teixeira, A. P. M., & Simioni, P. U. (2021). Assessment of Immunoreactivity against Therapeutic Options Employing the Leukocyte Adherence Inhibition Test as a Tool for Precision Medicine. European Journal of Clinical Medicine, 2(3), 40–45.

Search Panel

 Celso Eduardo Olivier
 Google Scholar |   PubMed |   EJMED Journal

 Daiana Guedes Pinto
 Google Scholar |   PubMed |   EJMED Journal

 Regiane Patussi dos Santos Lima
 Google Scholar |   PubMed |   EJMED Journal

 Mariana Dias da Silva
 Google Scholar |   PubMed |   EJMED Journal

 Raquel Acácia Pereira Gonçalves dos Santos
 Google Scholar |   PubMed |   EJMED Journal

 Ana Paula Monezzi Teixeira
 Google Scholar |   PubMed |   EJMED Journal

 Patricia Ucelli Simioni
 Google Scholar |   PubMed |   EJMED Journal

Most read articles by the same author(s)