##plugins.themes.bootstrap3.article.main##

We led an investigation to decide if hypo fractionated 35-days timetable of entire breast radiation is pretty much as viable. Women who bearing obtrusive breast carcinoma had gone through breast monitoring a medical procedure and resection edges were clean and partially lymph hubs were negatively approached with haphazardly relegated to get entire bosom illumination either at a control portion of 50 Gy in 15 divisions over a time of 45 days or at a portion of 45.5 Gy in 12 parts over a time of 22 days (the hypo fractionated-radiation bunch). The repetition at 36 months were 7.2% among the 301 ladies allocated to standard illumination as contrasted and 7.6% among the 312 ladies allocated to the hypo fractionated routine. At 36 months, 69.5% of ladies in the benchmark group as contrasted and 71.2% of the ladies in the hypo fractionated-radiation bunch had a decent or astounding restorative result. 3 years after therapy, sped up, hypo fractionated entire breast illumination was not sub-par compared to standard radiation therapy in ladies who had gone through breast preserving a medical procedure for obtrusive bosom malignant growth with clear careful edges what's more, negative axillary hubs. The ideal fractionation plan for entire bosom light after bosom rationing medical procedure is obscure.

References

  1. B. Fisher, J.-H. Jeong, S. Anderson, J. Bryant, E. R. Fisher, and N. Wolmark, “Twenty-five-year follow-up of a randomized trial comparing radical mastectomy, total mastectomy, and total mastectomy followed by irradiation.,” N. Engl. J. Med., vol. 347, no. 8, pp. 567–575, Aug. 2002, doi: 10.1056/NEJMoa020128.
     Google Scholar
  2. B. Fisher et al., “Eight-year results of a randomized clinical trial comparing total mastectomy and lumpectomy with or without irradiation in the treatment of breast cancer.,” N. Engl. J. Med., vol. 320, no. 13, pp. 822–828, Mar. 1989, doi: 10.1056/NEJM198903303201302.
     Google Scholar
  3. A. Bhatt, K. Sowards, G. Bhatt, A. Freeman, and A. Dragun, “Impact of interfraction seroma collection on breast brachytherapy dosimetry - a mathematical model.,” J. Contemp. Brachytherapy, vol. 4, no. 2, pp. 101–105, Jun. 2012, doi: 10.5114/jcb.2012.29366.
     Google Scholar
  4. S. W. Yoon et al., “Per-fraction positional and dosimetric performance of prone breast tangential radiotherapy on HalcyonTM linear accelerator assessed with daily rapid kilo-voltage cone beam computed tomography: a single-institution pilot study.,” Radiat. Oncol., vol. 15, no. 1, p. 258, Nov. 2020, doi: 10.1186/s13014-020-01700-6.
     Google Scholar
  5. G. Curigliano et al., “De-escalating and escalating treatments for early-stage breast cancer: the St. Gallen International Expert Consensus Conference on the Primary Therapy of Early Breast Cancer 2017.,” Ann. Oncol. Off. J. Eur. Soc. Med. Oncol., vol. 28, no. 8, pp. 1700–1712, Aug. 2017, doi: 10.1093/annonc/mdx308.
     Google Scholar
  6. A. Gupta, N. Ohri, and B. G. Haffty, “Hypofractionated radiation treatment in the management of breast cancer.,” Expert Rev. Anticancer Ther., vol. 18, no. 8, pp. 793–803, Aug. 2018, doi: 10.1080/14737140.2018.1489245.
     Google Scholar
  7. J. Y. Lin et al., “Full axillary lymph node dissection and increased breast epidermal thickness 1 year after radiation therapy for breast cancer.,” J. Surg. Oncol., vol. 120, no. 8, pp. 1397–1403, Dec. 2019, doi: 10.1002/jso.25757.
     Google Scholar
  8. J. Boyages and L. Baker, “Evolution of radiotherapy techniques in breast conservation treatment.” Gland Surg., vol. 7, no. 6, pp. 576–595, Dec. 2018, doi: 10.21037/gs.2018.11.10.
     Google Scholar
  9. N. Aibe et al., “Results of a nationwide survey on Japanese clinical practice in breast-conserving radiotherapy for breast cancer.” J. Radiat. Res., vol. 60, no. 1, pp. 142–149, Jan. 2019, doi: 10.1093/jrr/rry095.
     Google Scholar
  10. J. Sanz et al., “Once-Weekly Hypofractionated Radiotherapy for Breast Cancer in Elderly Patients: Efficacy and Tolerance in 486 Patients.” Biomed Res. Int., vol. 2018, p. 8321871, 2018, doi: 10.1155/2018/8321871.
     Google Scholar
  11. S. F. Shaitelman et al., “Acute and Short-term Toxic Effects of Conventionally Fractionated vs Hypofractionated Whole-Breast Irradiation: A Randomized Clinical Trial.,” JAMA Oncol., vol. 1, no. 7, pp. 931–941, Oct. 2015, doi: 10.1001/jamaoncol.2015.2666.
     Google Scholar
  12. S. Chatterjee and S. Chakraborty, “Hypofractionated radiation therapy comparing a standard radiotherapy schedule (over 3 weeks) with a novel 1-week schedule in adjuvant breast cancer: an open-label randomized controlled study (HYPORT-Adjuvant)-study protocol for a multicentre, randomized ,” Trials, vol. 21, no. 1, p. 819, Sep. 2020, doi: 10.1186/s13063-020-04751-y.
     Google Scholar
  13. H. Kim et al., “Prognostic Impact of Elective Supraclavicular Nodal Irradiation for Patients with N1 Breast Cancer after Lumpectomy and Anthracycline Plus Taxane-Based Chemotherapy (KROG 1418): A Multicenter Case-Controlled Study.,” Cancer Res. Treat., vol. 49, no. 4, pp. 970–980, Oct. 2017, doi: 10.4143/crt.2016.382.
     Google Scholar
  14. E. F. Gillespie et al., “Geographic Disparity in the Use of Hypofractionated Radiation Therapy among Elderly Women Undergoing Breast Conservation for Invasive Breast Cancer.” Int. J. Radiat. Oncol. Biol. Phys., vol. 96, no. 2, pp. 251–258, Oct. 2016, doi: 10.1016/j.ijrobp.2016.05.006.
     Google Scholar
  15. K. J. Ray, N. R. Sibson, and A. E. Kiltie, “Treatment of Breast and Prostate Cancer by Hypofractionated Radiotherapy: Potential Risks and Benefits.” Clin. Oncol. (R. Coll. Radiol)., vol. 27, no. 7, pp. 420–426, Jul. 2015, doi: 10.1016/j.clon.2015.02.008.
     Google Scholar
  16. J.-C. Trone et al., “Assessment of non-inferiority with meta-analysis: example of hypofractionated radiation therapy in breast and prostate cancer.,” Sci. Rep., vol. 10, no. 1, p. 15415, Sep. 2020, doi: 10.1038/s41598-020-72088-2.
     Google Scholar
  17. B. E. Hickey, M. Lehman, D. P. Francis, and A. M. See, “Partial breast irradiation for early breast cancer.,” Cochrane database Syst. Rev., vol. 7, no. 7, p. CD007077, Jul. 2016, doi: 10.1002/14651858.CD007077.pub3.
     Google Scholar
  18. G. Henke et al., “Tailored axillary surgery with or without axillary lymph node dissection followed by radiotherapy in patients with clinically node-positive breast cancer (TAXIS): study protocol for a multicenter, randomized phase-III trial.,” Trials, vol. 19, no. 1, p. 667, Dec. 2018, doi: 10.1186/s13063-018-3021-9.
     Google Scholar
  19. F. Sedlmayer et al., “Intraoperative radiotherapy (IORT) as boost in breast cancer.” Radiat. Oncol., vol. 12, no. 1, p. 23, Jan. 2017, doi: 10.1186/s13014-016-0749-9.
     Google Scholar
  20. M. S. Moran et al., “Society of Surgical Oncology-American Society for Radiation Oncology consensus guideline on margins for breast-conserving surgery with whole-breast irradiation in stages I and II invasive breast cancer.” Int. J. Radiat. Oncol. Biol. Phys., vol. 88, no. 3, pp. 553–564, Mar. 2014, doi: 10.1016/j.ijrobp.2013.11.012.
     Google Scholar
  21. J. E. Bekelman et al., “Uptake and costs of hypofractionated vs conventional whole breast irradiation after breast conserving surgery in the United States, 2008-2013.,” JAMA, vol. 312, no. 23, pp. 2542–2550, Dec. 2014, doi: 10.1001/jama.2014.16616.
     Google Scholar
  22. F. De Rose et al., “Phase II trial of hypofractionated VMAT-based treatment for early stage breast cancer: 2-year toxicity and clinical results.” Radiat. Oncol., vol. 11, no. 1, p. 120, Sep. 2016, doi: 10.1186/s13014-016-0701-z.
     Google Scholar
  23. S.-S. Liau, M. Cariati, D. Noble, C. Wilson, and G. C. Wishart, “Audit of local recurrence following breast conservation surgery with 5-mm target margin and hypofractionated 40-Gray breast radiotherapy for invasive breast cancer.,” Ann. R. Coll. Surg. Engl., vol. 92, no. 7, pp. 562–568, Oct. 2010, doi: 10.1308/003588410X12699663903476.
     Google Scholar
  24. N. Houssami, P. Macaskill, M. L. Marinovich, and M. Morrow, “The association of surgical margins and local recurrence in women with early-stage invasive breast cancer treated with breast-conserving therapy: a meta-analysis.,” Ann. Surg. Oncol., vol. 21, no. 3, pp. 717–730, Mar. 2014, doi: 10.1245/s10434-014-3480-5.
     Google Scholar
  25. Y.-J. Kim, K. H. Shin, and K. Kim, “Omitting Adjuvant Radiotherapy for Hormone Receptor‒Positive Early-Stage Breast Cancer in Old Age: A Propensity Score Matched SEER Analysis.,” Cancer Res. Treat., vol. 51, no. 1, pp. 326–336, Jan. 2019, doi: 10.4143/crt.2018.163.
     Google Scholar
  26. M. Lagendijk et al., “TUmor-volume to breast-volume RAtio for improving COSmetic results in breast cancer patients (TURACOS); a randomized controlled trial.,” BMC Cancer, vol. 17, no. 1, p. 336, May 2017, doi: 10.1186/s12885-017-3280-y.
     Google Scholar
  27. A. Ho and M. Morrow, “The evolution of the locoregional therapy of breast cancer.” Oncologist, vol. 16, no. 10, pp. 1367–1379, 2011, doi: 10.1634/theoncologist.2011-0223.
     Google Scholar
  28. J. B. Yu et al., “Peer Influence on Physician Use of Shorter Course External Beam Radiation Therapy for Patients with Breast Cancer.” Pract. Radiat. Oncol., vol. 10, no. 2, pp. 75–83, 2020, doi: 10.1016/j.prro.2019.11.001.
     Google Scholar
  29. M. Morrow et al., “Society of Surgical Oncology-American Society for Radiation Oncology-American Society of Clinical Oncology Consensus Guideline on Margins for Breast-Conserving Surgery with Whole-Breast Irradiation in Ductal Carcinoma In Situ.,” Ann. Surg. Oncol., vol. 23, no. 12, pp. 3801–3810, Nov. 2016, doi: 10.1245/s10434-016-5449-z.
     Google Scholar
  30. A. Nagai, Y. Shibamoto, M. Yoshida, K. Inoda, and Y. Kikuchi, “Intensity-modulated radiotherapy using two static ports of tomotherapy for breast cancer after conservative surgery: dosimetric comparison with other treatment methods and 3-year clinical results.” J. Radiat. Res., vol. 58, no. 4, pp. 529–536, Jul. 2017, doi: 10.1093/jrr/rrw132.
     Google Scholar
  31. A. J. Khan et al., “Hypofractionated Postmastectomy Radiation Therapy Is Safe and Effective: First Results from a Prospective Phase II Trial.,” J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol., vol. 35, no. 18, pp. 2037–2043, Jun. 2017, doi: 10.1200/JCO.2016.70.7158.
     Google Scholar
  32. S. R. Stecklein et al., “Prospective Comparison of Toxicity and Cosmetic Outcome after Accelerated Partial Breast Irradiation with Conformal External Beam Radiotherapy or Single-Entry Multilumen Intracavitary Brachytherapy.,” Pract. Radiat. Oncol., vol. 9, no. 1, pp. e4–e13, Jan. 2019, doi: 10.1016/j.prro.2018.08.003.
     Google Scholar
  33. J. S. Haviland et al., “Late normal tissue effects in the arm and shoulder following lymphatic radiotherapy: Results from the UK START (Standardisation of Breast Radiotherapy) trials.” Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol., vol. 126, no. 1, pp. 155–162, Jan. 2018, doi: 10.1016/j.radonc.2017.10.033.
     Google Scholar
  34. C. M. Fisher and R. Rabinovitch, “Frontiers in radiotherapy for early-stage invasive breast cancer.” J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol., vol. 32, no. 26, pp. 2894–2901, Sep. 2014, doi: 10.1200/JCO.2014.55.1184.
     Google Scholar
  35. J. Landercasper et al., “The American Society of Breast Surgeons and Quality Payment Programs: Ranking, Defining, and Benchmarking More Than 1 Million Patient Quality Measure Encounters.,” Ann. Surg. Oncol., vol. 24, no. 10, pp. 3093–3106, Oct. 2017, doi: 10.1245/s10434-017-5940-1.
     Google Scholar
  36. L. Liu et al., “Comparing hypofractionated to conventional fractionated radiotherapy in postmastectomy breast cancer: a meta-analysis and systematic review.” Radiat. Oncol., vol. 15, no. 1, p. 17, Jan. 2020, doi: 10.1186/s13014-020-1463-1.
     Google Scholar
  37. D. B. Page et al., “Two may be better than one: PD-1/PD-L1 blockade combination approaches in metastatic breast cancer.” NPJ breast cancer, vol. 5, p. 34, 2019, doi: 10.1038/s41523-019-0130-x.
     Google Scholar
  38. L. He, Q. Wu, J. Xiong, Z. Su, B. Zhang, and Y. Song, “Do early HER2-overexpression breast cancer patients benefit from undergoing neoadjuvant trastuzumab and mastectomy? A meta-analysis.,” Cancer Manag. Res., vol. 11, pp. 8043–8054, 2019, doi: 10.2147/CMAR.S208319.
     Google Scholar
  39. G. M. Freedman et al., “Five-year local control in a phase II study of hypofractionated intensity modulated radiation therapy with an incorporated boost for early stage breast cancer.,” Int. J. Radiat. Oncol. Biol. Phys., vol. 84, no. 4, pp. 888–893, Nov. 2012, doi: 10.1016/j.ijrobp.2012.01.091.
     Google Scholar
  40. S. Tian et al., “Comparison of Mammographic Changes Across Three Different Fractionation Schedules for Early-Stage Breast Cancer.,” Int. J. Radiat. Oncol. Biol. Phys., vol. 95, no. 2, pp. 597–604, Jun. 2016, doi: 10.1016/j.ijrobp.2016.01.056.
     Google Scholar
  41. B. M. Syed et al., “Oestrogen receptor negative early operable primary breast cancer in older women-Biological characteristics and long-term clinical outcome.” PLoS One, vol. 12, no. 12, p. e0188528, 2017, doi: 10.1371/journal.pone.0188528.
     Google Scholar
  42. S. M. Shirvani et al., “Trends in Local Therapy Utilization and Cost for Early-Stage Breast Cancer in Older Women: Implications for Payment and Policy Reform.” Int. J. Radiat. Oncol. Biol. Phys., vol. 95, no. 2, pp. 605–616, Jun. 2016, doi: 10.1016/j.ijrobp.2016.01.059.
     Google Scholar
  43. J. Landercasper et al., “Measures of Appropriateness and Value for Breast Surgeons and Their Patients: The American Society of Breast Surgeons Choosing Wisely (®) Initiative.,” Ann. Surg. Oncol., vol. 23, no. 10, pp. 3112–3118, Oct. 2016, doi: 10.1245/s10434-016-5327-8.
     Google Scholar
  44. M. Doré, B. Cutuli, P. Cellier, L. Campion, and M. Le Blanc, “Hypofractionated irradiation in elderly patients with breast cancer after breast conserving surgery and mastectomy: Analysis of 205 cases.” Radiat. Oncol., vol. 10, p. 161, Aug. 2015, doi: 10.1186/s13014-015-0448-y.
     Google Scholar
  45. P. T. Truong, I. A. Olivotto, T. J. Whelan, and M. Levine, “Clinical practice guidelines for the care and treatment of breast cancer: 16. Locoregional post-mastectomy radiotherapy.” C. Can. Med. Assoc. J. = J. l’Association medicale Can., vol. 170, no. 8, pp. 1263–1273, Apr. 2004, doi: 10.1503/cmaj.1031000.
     Google Scholar
  46. A. J. Khan et al., “Three-Fraction Accelerated Partial Breast Irradiation (APBI) Delivered with Brachytherapy Applicators Is Feasible and Safe: First Results From the TRIUMPH-T Trial.” Int. J. Radiat. Oncol. Biol. Phys., vol. 104, no. 1, pp. 67–74, May 2019, doi: 10.1016/j.ijrobp.2018.12.050.
     Google Scholar
  47. G. Tortorelli et al., “Standard or hypofractionated radiotherapy in the postoperative treatment of breast cancer: a retrospective analysis of acute skin toxicity and dose inhomogeneities.,” BMC Cancer, vol. 13, p. 230, May 2013, doi: 10.1186/1471-2407-13-230.
     Google Scholar
  48. J. J. Cuaron, S. M. MacDonald, and O. Cahlon, “Novel applications of proton therapy in breast carcinoma.” Chinese Clin. Oncol., vol. 5, no. 4, p. 52, Aug. 2016, doi: 10.21037/cco.2016.06.04.
     Google Scholar
  49. H.-J. Wu and P.-Y. Chu, “Recent Discoveries of Macromolecule- and Cell-Based Biomarkers and Therapeutic Implications in Breast Cancer.,” Int. J. Mol. Sci., vol. 22, no. 2, Jan. 2021, doi: 10.3390/ijms22020636.
     Google Scholar
  50. I. J. Boero et al., “The impact of radiotherapy costs on clinical outcomes in breast cancer.” Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol., vol. 117, no. 2, pp. 393–399, Nov. 2015, doi: 10.1016/j.radonc.2015.10.004.
     Google Scholar
  51. R. Rabinovitch et al., “RTOG 95-17, a Phase II trial to evaluate brachytherapy as the sole method of radiation therapy for Stage I and II breast carcinoma--year-5 toxicity and cosmesis.,” Brachytherapy, vol. 13, no. 1. pp. 17–22, 2014, doi: 10.1016/j.brachy.2013.08.002.
     Google Scholar
  52. Y.-J. Cheng et al., “Long-Term Cardiovascular Risk after Radiotherapy in Women with Breast Cancer.,” J. Am. Heart Assoc., vol. 6, no. 5, May 2017, doi: 10.1161/JAHA.117.005633.
     Google Scholar
  53. G. Valdivia, Á. Alonso-Diez, D. Pérez-Alenza, and L. Peña, “From Conventional to Precision Therapy in Canine Mammary Cancer: A Comprehensive Review.” Front. Vet. Sci., vol. 8, p. 623800, 2021, doi: 10.3389/fvets.2021.623800.
     Google Scholar
  54. L. Tagliaferri et al., “Could a Personalized Strategy Using Accelerated Partial Breast Irradiation be an Advantage for Elderly Patients? A Systematic Review of the Literature and Multidisciplinary Opinion.,” J. Oncol., vol. 2020, p. 3928976, 2020, doi: 10.1155/2020/3928976.
     Google Scholar
  55. S. M. Buszek et al., “Lumpectomy plus Hormone or Radiation Therapy Alone for Women Aged 70 Years or Older with Hormone Receptor-Positive Early Stage Breast Cancer in the Modern Era: An Analysis of the National Cancer Database.” Int. J. Radiat. Oncol. Biol. Phys., vol. 105, no. 4, pp. 795–802, Nov. 2019, doi: 10.1016/j.ijrobp.2019.07.052.
     Google Scholar
  56. K. J. Borm et al., “Effect of hypofractionation on the incidental axilla dose during tangential field radiotherapy in breast cancer.” Strahlenther. Onkol., vol. 196, no. 9, pp. 771–778, Sep. 2020, doi: 10.1007/s00066-020-01636-6.
     Google Scholar
  57. L. He, Y. Lv, Y. Song, and B. Zhang, “The prognosis comparison of different molecular subtypes of breast tumors after radiotherapy and the intrinsic reasons for their distinct radiosensitivity.,” Cancer Manag. Res., vol. 11, pp. 5765–5775, 2019, doi: 10.2147/CMAR.S213663.
     Google Scholar
  58. A. Wöckel et al., “Interdisciplinary Screening, Diagnosis, Therapy and Follow-up of Breast Cancer. Guideline of the DGGG and the DKG (S3-Level, AWMF Registry Number 032/045OL, December 2017) - Part 2 with Recommendations for the Therapy of Primary, Recurrent and Advanced B,” Geburtshilfe Frauenheilkd., vol. 78, no. 11, pp. 1056–1088, Nov. 2018, doi: 10.1055/a-0646-4630.
     Google Scholar
  59. D. Krug et al., “Current controversies in radiotherapy for breast cancer.” Radiat. Oncol., vol. 12, no. 1, p. 25, Jan. 2017, doi: 10.1186/s13014-017-0766-3.
     Google Scholar
  60. K. Dias et al., “Claudin-Low Breast Cancer; Clinical & Pathological Characteristics.” PLoS One, vol. 12, no. 1, p. e0168669, 2017, doi: 10.1371/journal.pone.0168669.
     Google Scholar
  61. M. Brandão et al., “Healthcare use and costs in early breast cancer: a patient-level data analysis according to stage and breast cancer subtype.” ESMO open, vol. 5, no. 6, p. e000984, Nov. 2020, doi: 10.1136/esmoopen-2020-000984.
     Google Scholar
  62. T. A. Koulis, A. Dang, C. Speers, and R. A. Olson, “Factors affecting radiotherapy prescribing patterns in the post-mastectomy setting.,” Curr. Oncol., vol. 25, no. 2, pp. e146–e151, Apr. 2018, doi: 10.3747/co.25.3773.
     Google Scholar
  63. P. Ciammella et al., “Toxicity and cosmetic outcome of hypofractionated whole-breast radiotherapy: predictive clinical and dosimetric factors.” Radiat. Oncol., vol. 9, p. 97, Apr. 2014, doi: 10.1186/1748-717X-9-97.
     Google Scholar
  64. G. G. Hanna and A. M. Kirby, “Intraoperative radiotherapy in early stage breast cancer: potential indications and evidence to date.,” Br. J. Radiol., vol. 88, no. 1049, p. 20140686, May 2015, doi: 10.1259/bjr.20140686.
     Google Scholar
  65. M. Guenzi et al., “Hypofractionated irradiation of infra-supraclavicular lymph nodes after axillary dissection in patients with breast cancer post-conservative surgery: impact on late toxicity.” Radiat. Oncol., vol. 10, p. 177, Aug. 2015, doi: 10.1186/s13014-015-0480-y.
     Google Scholar
  66. H. Kim et al., “Optimal radiation dose for patients with one to three lymph node positive breast cancer following breast-conserving surgery and anthracycline plus taxane-based chemotherapy: A retrospective multicenter analysis (KROG 1418).,” Oncotarget, vol. 8, no. 1, pp. 1796–1804, Jan. 2017, doi: 10.18632/oncotarget.12882.
     Google Scholar
  67. H. S. Choi, H. S. Jang, K. M. Kang, and B.-O. Choi, “Symptom palliation of hypofractionated radiotherapy for patients with incurable inflammatory breast cancer.” Radiat. Oncol., vol. 14, no. 1, p. 110, Jun. 2019, doi: 10.1186/s13014-019-1320-2.
     Google Scholar
  68. W. Budach et al., “DEGRO practical guidelines for radiotherapy of breast cancer V: Therapy for locally advanced and inflammatory breast cancer, as well as local therapy in cases with synchronous distant metastases.” Strahlenther. Onkol., vol. 191, no. 8, pp. 623–633, Aug. 2015, doi: 10.1007/s00066-015-0843-1.
     Google Scholar
  69. K. Karasawa et al., “A Phase I clinical trial of carbon ion radiotherapy for Stage I breast cancer: clinical and pathological evaluation.” J. Radiat. Res., vol. 60, no. 3, pp. 342–347, May 2019, doi: 10.1093/jrr/rry113.
     Google Scholar
  70. M. A. Torres et al., “The Impact of Axillary Lymph Node Surgery on Breast Skin Thickening During and After Radiation Therapy for Breast Cancer.” Int. J. Radiat. Oncol. Biol. Phys., vol. 95, no. 2, pp. 590–596, Jun. 2016, doi: 10.1016/j.ijrobp.2016.01.030.
     Google Scholar
  71. R. Kreienberg, U.-S. Albert, M. Follmann, I. B. Kopp, T. Kühn, and A. Wöckel, “Interdisciplinary GoR level III Guidelines for the Diagnosis, Therapy and Follow-up Care of Breast Cancer: Short version - AWMF Registry No.: 032-045OL AWMF-Register-Nummer: 032-045OL - Kurzversion 3.0, Juli 2012.,” Geburtshilfe Frauenheilkd., vol. 73, no. 6, pp. 556–583, Jun. 2013, doi: 10.1055/s-0032-1328689.
     Google Scholar
  72. L. Feys et al., “Radiation-induced lung damage promotes breast cancer lung-metastasis through CXCR4 signaling.” Oncotarget, vol. 6, no. 29, pp. 26615–26632, Sep. 2015, doi: 10.18632/oncotarget.5666.
     Google Scholar
  73. M. Maes-Carballo, L. Mignini, M. Martín-Díaz, A. Bueno-Cavanillas, and K. S. Khan, “Quality and reporting of clinical guidelines for breast cancer treatment: A systematic review.” Breast, vol. 53, pp. 201–211, Oct. 2020, doi: 10.1016/j.breast.2020.07.011.
     Google Scholar
  74. M. Gray et al., “Naturally-Occurring Canine Mammary Tumors as a Translational Model for Human Breast Cancer.” Front. Oncol., vol. 10, p. 617, 2020, doi: 10.3389/fonc.2020.00617.
     Google Scholar
  75. K. P. Valuckas, V. Atkocius, I. Kuzmickiene, E. Aleknavicius, S. Liukpetryte, and V. Ostapenko, “Second malignancies following conventional or combined 252Cf neutron brachytherapy with external beam radiotherapy for breast cancer.,” J. Radiat. Res., vol. 54, no. 5, pp. 872–879, Sep. 2013, doi: 10.1093/jrr/rrt009.
     Google Scholar
  76. K. M. Arnold, L. M. Opdenaker, N. J. Flynn, D. K. Appeah, and J. Sims-Mourtada, “Radiation induces an inflammatory response that results in STAT3-dependent changes in cellular plasticity and radioresistance of breast cancer stem-like cells.,” Int. J. Radiat. Biol., vol. 96, no. 4, pp. 434–447, Apr. 2020, doi: 10.1080/09553002.2020.1705423.
     Google Scholar
  77. V. Landoni et al., “Evidence from a breast cancer hypofractionated schedule: late skin toxicity assessed by ultrasound.” J. Exp. Clin. Cancer Res., vol. 32, no. 1, p. 80, Oct. 2013, doi: 10.1186/1756-9966-32-80.
     Google Scholar
  78. Y. Hasan, J. Waller, K. Yao, S. J. Chmura, and D. Huo, “Utilization trend and regimens of hypofractionated whole breast radiation therapy in the United States.,” Breast Cancer Res. Treat., vol. 162, no. 2, pp. 317–328, Apr. 2017, doi: 10.1007/s10549-017-4120-0.
     Google Scholar
  79. C. W. Swanick et al., “Long-term Patient-Reported Outcomes in Older Breast Cancer Survivors: A Population-Based Survey Study.” Int. J. Radiat. Oncol. Biol. Phys., vol. 100, no. 4, pp. 882–890, Mar. 2018, doi: 10.1016/j.ijrobp.2017.11.047.
     Google Scholar
  80. J. S. Chang et al., “Trends in the Application of Postmastectomy Radiotherapy for Breast Cancer With 1 to 3 Positive Axillary Nodes and Tumors ≤5 cm in the Modern Treatment Era: A Retrospective Korean Breast Cancer Society Report.,” Medicine (Baltimore)., vol. 95, no. 19, p. e3592, May 2016, doi: 10.1097/MD.0000000000003592.
     Google Scholar
  81. M. Scorsetti et al., “Phase I-II study of hypofractionated simultaneous integrated boost using volumetric modulated arc therapy for adjuvant radiation therapy in breast cancer patients: a report of feasibility and early toxicity results in the first 50 treatments.,” Radiat. Oncol., vol. 7, p. 145, Aug. 2012, doi: 10.1186/1748-717X-7-145.
     Google Scholar
  82. I. Ratosa, A. Jenko, and I. Oblak, “Breast size impact on adjuvant radiotherapy adverse effects and dose parameters in treatment planning.” Radiol. Oncol., vol. 52, no. 3, pp. 233–244, Aug. 2018, doi: 10.2478/raon-2018-0026.
     Google Scholar
  83. S. Ahmed et al., “Newly discovered breast cancer susceptibility loci on 3p24 and 17q23.2.,” Nat. Genet., vol. 41, no. 5, pp. 585–590, May 2009, doi: 10.1038/ng.354.
     Google Scholar
  84. S. Prathima, R. Kalyani, and S. Parimala, “Primary tubercular mastitis masquerading as malignancy.” Journal of natural science, biology, and medicine, vol. 5, no. 1. pp. 184–186, Jan-2014, doi: 10.4103/0976-9668.127324.
     Google Scholar
  85. Z. Güzelöz et al., “Treatment results in patients with ductal carcinoma in situ treated with adjuvant radiotherapy.,” Turkish J. Med. Sci., vol. 49, no. 4, pp. 1151–1156, Aug. 2019, doi: 10.3906/sag-1810-53.
     Google Scholar
  86. C. Murphy et al., “Impact of the radiation boost on outcomes after breast-conserving surgery and radiation.” Int. J. Radiat. Oncol. Biol. Phys., vol. 81, no. 1, pp. 69–76, Sep. 2011, doi: 10.1016/j.ijrobp.2010.04.067.
     Google Scholar
  87. S. Darby et al., “Effect of radiotherapy after breast-conserving surgery on 10-year recurrence and 15-year breast cancer death: meta-analysis of individual patient data for 10,801 women in 17 randomised trials.” Lancet (London, England), vol. 378, no. 9804, pp. 1707–1716, Nov. 2011, doi: 10.1016/S0140-6736(11)61629-2.
     Google Scholar
  88. S.-W. Lee et al., “Accelerated whole breast irradiation in early breast cancer patients with adverse prognostic features.” Oncotarget, vol. 7, no. 49, pp. 81888–81898, Dec. 2016, doi: 10.18632/oncotarget.11702.
     Google Scholar
  89. S. Ahlawat et al., “Short-Course Hypofractionated Radiation Therapy with Boost in Women with Stages 0 to IIIa Breast Cancer: A Phase 2 Trial.” Int. J. Radiat. Oncol. Biol. Phys., vol. 94, no. 1, pp. 118–125, Jan. 2016, doi: 10.1016/j.ijrobp.2015.09.011.
     Google Scholar
  90. M. S. Moran et al., “Association of Radiotherapy Boost for Ductal Carcinoma in Situ with Local Control After Whole-Breast Radiotherapy.,” JAMA Oncol., vol. 3, no. 8, pp. 1060–1068, Aug. 2017, doi: 10.1001/jamaoncol.2016.6948.
     Google Scholar
  91. E. Ippolito et al., “Hypofractionated radiotherapy with concomitant boost for breast cancer: a dose escalation study.” Br. J. Radiol., vol. 92, no. 1095, p. 20180169, Mar. 2019, doi: 10.1259/bjr.20180169.
     Google Scholar
  92. S. Park, S. Do Ahn, E. K. Choi, and S. S. Kim, “The effect of escalating the boost dose for patients with involved resection margin after breast-conserving surgery.” Jpn. J. Clin. Oncol., vol. 48, no. 3, pp. 272–277, Mar. 2018, doi: 10.1093/jjco/hyy002.
     Google Scholar
  93. M. C. De Santis et al., “Comparison of two radiation techniques for the breast boost in patients undergoing neoadjuvant treatment for breast cancer.,” Br. J. Radiol., vol. 89, no. 1066, p. 20160264, Oct. 2016, doi: 10.1259/bjr.20160264.
     Google Scholar
  94. P. Pinnarò et al., “Short course hypofractionated whole breast irradiation after conservative surgery: a single institution phase II study.” J. Exp. Clin. Cancer Res., vol. 36, no. 1, p. 191, Dec. 2017, doi: 10.1186/s13046-017-0640-z.
     Google Scholar
  95. I. Kindts, A. Laenen, T. Depuydt, and C. Weltens, “Tumour bed boost radiotherapy for women after breast-conserving surgery.” Cochrane database Syst. Rev., vol. 11, no. 11, p. CD011987, Nov. 2017, doi: 10.1002/14651858.CD011987.pub2.
     Google Scholar
  96. N. Bromham, M. Schmidt-Hansen, M. Astin, E. Hasler, and M. W. Reed, “Axillary treatment for operable primary breast cancer.,” Cochrane database Syst. Rev., vol. 1, no. 1, p. CD004561, Jan. 2017, doi: 10.1002/14651858.CD004561.pub3.
     Google Scholar
  97. E. Phillips, “MEDICAL PRELIMINARIES FOR LONDON STUDENTS.” British Medical Journal, vol. 1, no. 2686. p. 1456, Jun-1912.
     Google Scholar
  98. H. A. Jones et al., “Impact of pathological characteristics on local relapse after breast-conserving therapy: a subgroup analysis of the EORTC boost versus no boost trial.” J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol., vol. 27, no. 30, pp. 4939–4947, Oct. 2009, doi: 10.1200/JCO.2008.21.5764.
     Google Scholar
  99. J. Nsaful et al., “Experiences and challenges in the management of pregnancy-associated breast cancer at the Korle Bu Teaching Hospital: a review of four cases.” Ecancermedicalscience, vol. 14. p. 1140, 2020, doi: 10.3332/ecancer.2020.1140.
     Google Scholar
  100. D. J. Klionsky et al., “Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition).,” Autophagy, vol. 12, no. 1, pp. 1–222, 2016, doi: 10.1080/15548627.2015.1100356.
     Google Scholar
  101. J. Sun, Z. Huang, Z. Hu, and R. Sun, “Benefits of local tumor excision and pharyngectomy on the survival of nasopharyngeal carcinoma patients: a retrospective observational study based on SEER database.,” J. Transl. Med., vol. 15, no. 1, p. 116, May 2017, doi: 10.1186/s12967-017-1204-x.
     Google Scholar
  102. L.-S. Zheng et al., “SPINK6 Promotes Metastasis of Nasopharyngeal Carcinoma via Binding and Activation of Epithelial Growth Factor Receptor.,” Cancer Res., vol. 77, no. 2, pp. 579–589, Jan. 2017, doi: 10.1158/0008-5472.CAN-16-1281.
     Google Scholar